
Rethinking Game 

Architecture with 

Immutability
JACOB DUFAULT

SPONSER: DR. BERNHARD



Milestone 6 Progress Summary

 Work on XNA/MonoGame bindings

 Sample game demo

 Demonstrates how to achieve key concepts in forge (entity creation, 

destruction, systems, data, etc)

 User manual documentation

 Generated via both Sandcastle and Doxygen

 Doxygen preferable; more usable output (Windows help files vs pure 

HTML)



Future Work

 Revisiting a key design decision

 Systems (game logic) apply globally

 Extra work in content editor was done to ameliorate this issue

 Instead of global systems, instead:

 An entity requests that a system process it

 Naturally, this will include all systems contained in the dependency graph of 
the requested system

 Each system can store local data per entity

 Entity data is explicitly meant to be shared across all systems for 
communication, etc

 So the TemporarySystem cannot access the data the SpawningSystem uses 
in the entity



Lessons Learned

 Immutability is extremely useful

 Favor simplicity over performance

 Don’t optimize until profiling

 Multithreading introduces lots of subtle bugs that take significant 
amounts of time to fix

 Unit tests are awesome

 Handy for catching multithreading bugs by repeating them hundreds of 
times and debug/breaking on error

 Dual content/runtime implementations tricky

 Future: Try an explicit serialization protocol with completely separate 
content/runtime libraries



Demo

 Runtime Implementation – Unity

 Runtime Implementation – XNA

 Content Implementation – Unity



Questions?

Thanks!


