
Rethinking Game Architecture with Immutability – Milestone 6 (April

16th)
Student: Jacob Dufault (jacobdufault@gmail.com)

Faculty sponsor: Professor Bernhard

Progress Matrix
Task Completion

Work on XNA/MonoGame bindings 100%

Demo a simple game running in both XNA and
Unity

100%

Continue work on Unity integration 100%

Writer user manual and documentation 100%

Task Summaries

Work on XNA/MonoGame Bindings
The XNA bindings work well right now. All gameplay logic can be shared between renderers, and there is

a compatibility framework so that some renderer-specific data can also be shared. The XNA bindings are

relatively minimal as more development experience has shown this to be a more optimal development

method; more can be added in the future as pain points are discovered.

Demo a simple game running in both XNA and Unity
The simple game has been created and works; it runs in both XNA and Unity. The gameplay sample

successfully demonstrates object creation, object updating, input, object destruction, and template

usage. The focus is on demonstrating how to use forge and key concepts, not on any actual gameplay

mechanics.

Write user manual and documentation
The user manual has been written and is included in the github page for forge. There is also

documentation generated via Sandcastle for all of the extensive XML comments on all of the types

within forge.

Lessons Learned

Immutability is extremely useful
Immutability prevented a number of bugs, such as those related to update order.

Favor simplicity over performance
Large amounts of time have been spent on optimization, which is likely unneeded. Instead, it would

have worked better to have good levels of abstraction where the implementation could be changed to

give much better performance.

mailto:jacobdufault@gmail.com

Don’t optimize until profiling
It may take very little time to write something that works but the implementation may be slow.

However, if the feature is used very rarely this does not matter and the developer can move onto more

important things.

Multithreading introduces subtle bugs
It’s easier to just ignore multithreading until it’s necessary. Of course, the initial architecture needs to be

designed such that it can be multithreaded. In terms of games, the actual game logic likely does not

need to be multithreaded. Instead, core systems, such as pathfinding, physics, rendering, etc, can all be

submitted as jobs and they instead are the multithreaded logic.

Unit tests are awesome
Unit tests caught a large number of simple programming mistakes and helped maintain application

stability.

Dual content/runtime implementations are tricky
Lots of serialization complexity to support dual content and runtime implementations, including a

decent amount of duplicated code. This would be easier if there was an explicit serialization

format/library that handled these issues. Then the content engine could be completely separate from

the runtime engine.

Sponsor Feedback
Signature and Date: __

Feedback:

Sponsor Evaluation – Rethinking Game Architecture with Immutability –

Milestone 6

Jacob Dufault
Score (0-10):

Signature & Date:

