
Better Tower Defense – Milestone 3 Evaluation (November 25th)
Student: Jacob Dufault (jacobdufault@gmail.com)

Faculty sponsor: Professor Bernhard

Special Note
I ended up changing my priorities this milestone. Instead of completing the original milestone goals, I

instead accomplished a large number of goals that needed to be completed sometime between some

gameplay code being written and an extremely significant amount of gameplay code being written.

Progress Matrix (new)
Task Completion

Implement serialization framework 100%

Implement level saving, loading, replays 100%

Replay/saved level versioning 100%

Separation of entity system from Unity 100%

Implement fully multithreaded entity system 100%

Extension platform 100%

Proper content editor support 100%

Progress Matrix (original)
Task Completion

Implement resource system 0%

Implement power system 0%

Implement level types 0%

Task Summaries

Serialization Framework
I extensively evaluated four different frameworks used for serialization.

1. Unity’s built-in serialization

2. Protobuf-net

3. NetSerializer

4. LitJSON

Each of the serialization frameworks had numerous problems. Unity could not support value types or

generics, protobuf-net required explicit registration for inheritance hierarchies (problematic for code

maintenance and an easy source of bugs), NetSerializer could not be used on mobile platforms due to

code generation, and LitJSON was unusable because of an uncommented codebase (it needed additional

features that it lacked, and the primary developer appears to have stepped down ~5 years ago).

In the end, I ended up writing a custom serialization framework that serializes to a language very similar

to JSON, except with the extraneous characters removed. Performance has been good so far, and it

supports a large variety of features. In is loosely based off of the structure of LitJSON.

mailto:jacobdufault@gmail.com

Level Saving, Loading, and Replays
Saving and loading levels is a critical feature that needed to be implemented. It heavily uses the

serialization framework. Due to the power of the already developed entity framework, all client code

can have support for saving and loading with relative simplicity (they just need to serialize local state,

which is easy given the flexibility of the serializer).

Replays are very similar to level saving and loading, except that each replay stores a list of input

commands, which are then replayed as the game simulation moves along.

Replay/Saved Level Versioning
By utilizing a code loading mechanism for identifying gameplay code, replays and saved levels can be

versioned so that any version of the game renderer can view them. For example, if a replay was made

with version 0.5 of the game, then it will have associated gameplay DLLs that associate explicitly to

version 0.5. When the replay is loaded, these DLLs are also loaded into the game and are used to

provide the gameplay logic.

Separation of Entity System and Unity
In order to facilitate better debugging support (and in general tool support) and better code

maintenance, the entity system now is completely independent of Unity. This means that all gameplay

code is defined in an engine agnostic framework, which means that if a developer really wanted, Unity

could easily be replaced with XNA/MonoGame (or similar) for rendering the game.

Fully Multithreaded Entity System
The entity system can now automatically run systems in parallel, providing a nice potential speedup as

the number of entity systems increases. A significant amount of effort went into developing lock-free

data structures data structures when executing systems to provide as close to linear speedup as

possible.

Extension platform
As eluded to earlier, gameplay code is now loaded via DLL injection. This supports versioned saved

states/replays, but it also allows for the game to be extended in a simple manner. The design of the

entity system (automatic injection into systems) further supports the extension platform. Support for

the extension platform has been possible as a nice side-effect of previous engine architecture design

decisions.

Content Editor
Unity’s built-in Inspector has a large number of seemingly arbitrary restrictions, such as complete lack of

support for value types and generics. A similar inspector was written to support editing of all entities

that are contained the entity system, even if they are generic or even if they contain value types. The

improved inspector can be generalized to support more than just the entity system, but if that is done it

is for a future milestone.

Interestingly enough, the new inspector allows for simpler code when defining complex data structures.

For example, to create an effect (a la the dependent effect system) in the game requires only two

classes (one for the settings and one for the runtime state), instead of the three before (settings,

runtime state, Unity inspector wrapper).

Next Milestone
Title Summary

Implement resource system The resource system innovates in regards to not allowing some
players to quickly gain a runaway lead in resource acquisition.
Resources will be acquired by building a small base. For example,
the player can build a mine to acquire resources, and a blacksmith
to mine resources from the mine faster. Building a library can
further increase productivity, and perhaps even allow for certain
tower updates to be unlocked or allow for research towards
powers.

Implement power system The power system ties directly into the effect system. Powers are
essentially effects that the player can trigger directly that impact a
region of the map.

The power system requires that resources be implemented, as
triggering them will require resources.

Implement level types A number of level types are going to be implemented, such as
endless, waves, and attack. In essence, the level type describes the
way that level is going to be played; for example, will it be
cooperative with your friends or against your friends? More
fundamentally, the level type most controls how spawning is
controlled. For this reason, level types are going to closely integrate
into the spawning systems.

Sponsor Feedback
Signature and Date: __

Feedback:

Sponsor Evaluation – Better Tower Defense – Milestone 3

Jacob Dufault
Score (0-10):

Signature & Date:

