
Better Tower Defense – Design Document
Jacob Dufault

System Architecture – 5000 miles
Unity is the Unity engine; the Entity system is described below; Networking relates to interfacing with

other computes; the 3rd party code involves many systems, such as tweening, GUI work, serialization

(protobuf), potentially inversion-of-control/dependency injection…. Systems and Data are all of the

gameplay logic.

Hopefully it is obvious, but this is an extremely simplified model of the engine; the actual models would

be much too long – the Entity system model below does not even go into full detail, yet it has

surprisingly complexity even in the simplified form.

 Unity Entity System

Systems Data

Networking

3rd party: Tweening,

GUI, Serialization,

IoC/DI, …

System Architecture Overview - Entities
An overview of the entity system, with relevant modules grouped together. The EntityManager

coordinates all of the work; the Entity contains Data; the DataAccessor is used for quick retrieval of

Data; the EntityCommand is structured user input, whereas the EntityCommandNetworkManager issues

EntityCommands to the EntityManager; the SystemBehavior is user-defined logic that operates on

Entities, which is selects by using a combination of an Invoke and a set of Filters (which are processed to

form a CompiledFilter); DataProviders mediates between the Unity entity system and this one.

GameData<T> and GameDataProvider<T> provide type erasure for Data and DataProvider so that they

can be used generically through the EntitySystem but client code has type safety.

EntityManager
Data

GameData<T>

DataAccessor

Entity

EntityCommand

EntityCommandNetw

orkManager
CompiledFilter

Invoke

SystemBehavior

DataProvider

GameDataProvider<T>

>

Feature Implementation Notes

Entity System
See the architecture overview for the Entity System.

Networking
Connect to a server with the given password

Connect(string ip, string password)

Disconnect from a server or shut the server down

Disconnect()

Start running a server with the given password

StartServer(string password)

Send a network command, ie, pause the game.

SendCommand(NetworkCommand command)

Listen to a network message, ie, when we receive a pause game message.

AddCommandListener(Type commandType, Action<NetworkCommand> listener)

Unit Spawning
Uses the entity system; listen for objects which have “SpawnWave” data and spawn based on that data.

No API.

Locomotion
Uses the entity system; listen for objects which have “PathingData” and move based on that (ie, it will

contain a target, a path to follow, …). No API.

Effects
Uses the entity system; listen for objects which have “Effects” attached to them and change the object

status based on said effects. No API.

Building Placement
Attempt to build a new building at the given location; return if successful. Called via the network

messaging system; UI creates network messages and sends them.

bool BuildAt(vec3 location, GameObject prefab)

Resources
Uses the entity system; listen for buildings which can modify resource state and update based on them.

No API.

Power System
Use the effect system; tie into spatial optimization systems; no API.

Dynamic Difficulty
Use the entity system; modify spawning data (so it ties into the spawning system). Uses a separate

statistics module which just monitors the game gathering relevant statistics (number of enemies killed,

number of players, average enemy life span, …). No API.

